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ABSTRACT
High angular resolution diffusion imaging (HARDI)
is an MR acquisition technique that has been used to
identify and estimate multi-modal structure in white
matter. We introduce a multiresolution estimator of
the diffusion density in q-space based on a wavelet lift-
ing scheme for HARDI data. The proposed technique
avoids imposing isotropic smoothing with a fixed band-
width that is a common feature in other higher-order
methods. Summary statistics for the properties of the
diffusion density are derived entirely in q-space, based
on great circle and perpendicular great circle statistics.
A framework is developed to characterise structural
features of the diffusion using these statistics.

Index Terms— Anisotropy, HARDI measurements,
smoothing, wavelets.

1. INTRODUCTION

HARDI measurements of the diffusion in q-space are
collected in a set of orientations {q̃i}n

i=1 on the unit
sphere. The diffusion probability density function
(PDF), denoted a(x), is in the absence of measurement
error linked to the normalized measured signal A(q) via
an inverse Fourier transform. HARDI sampling permits
the determination of orientational inhomogeneity of the
PDF, e.g. using multi-tensor methods, q-ball imaging or
PAS-MRI [1, 2].

Multi-tensor modelling performs well if the mixture
population is indeed Gaussian and the number of fibre
populations is known a priori [3]. Both q-ball imaging
and PAS-MRI require smoothing for relatively consis-
tent estimation of the diffusion PDF. This means that
high-frequency features are removed over an interval of
frequencies, regardless of their contribution to the un-
derlying structure. PAS-MRI also has a smoothness pa-
rameter that must be fixed.

We develop a q-space density estimator with variable
bandwidth based on constructing wavelet coefficients di-
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rectly from the fixed gradient sampling scheme on the
unit sphere. The q-space density is estimated by ap-
plying a universal thresholding rule to the set of de-
rived wavelet coefficients. The wavelet transform is in-
verted to estimate the q-space density. Methods using a
single conservative threshold are prone to oversmooth-
ing, where high-frequency coefficients associated with
structure rather than noise are needlessly removed. To
alleviate such problems Cai and Silverman [4] proposed
thresholding a given coefficient based on the value of
its neighbouring coefficients, a rule that we adapt to
the neighbourhood defined by the gradient encoding
scheme. This multiresolution method reduces the ar-
tificial symmetry imposed on reconstructions by other
non-parametric estimation methods.

Once a density estimator has been calculated in q-
space, we propose to characterise its properties directly
in q-space rather than applying additional transforma-
tions into image space. This is in contrast to previous
methods; e.g., using the Funk-Radon Transform (FRT)
to produce an orientation distribution function (ODF)
[1]. One problem with existing methods of calculating
ODFs is that their interpretation varies across methods
[3], and they cannot be directly interpreted as PDFs in
space.

Interpretable summaries must be computed from a
non-parametric density estimator. Scalar measures in
space from the FRT were defined by [1]. We introduce
the great circle and perpendicular great circle statistics
that form the backbone for characterising complicated
spatial properties of the diffusion signal in q-space. This
characterisation is achieved in a series of steps by deter-
mining unidirectionality, degree of anisotropy and sym-
metry in space, directly from the q-space summaries.

2. ESTIMATING THE Q-SPACE DENSITY

Given a set of HARDI measurements in q-space {q̃i}n
i=1,

assume that the observed variables A(q̃i) have a Ri-
cian distribution with intensity A(q̃i) and error vari-
ance σ2. Estimation methods for A(q̃i) are commonly
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built on assuming a degree of smoothness of A(q), or
using a parametric model. We use lifting [5] to con-
struct wavelet coefficients {Ŵji} from the observed
data, where the index j denotes scale and i denotes the
location. The transform is constructed from distances
that are based on great circles, using the Haar trans-
form [5]. The nearest coefficient to location i at any
scale j is denoted bji �= i �= bj′i, ∀j′ < j. We use the
redundant wavelet transform to avoid misalignment
problems from local shifts between the underlying den-
sity and the sampling grid. We terminate the transform
at the primary resolution J , and complete the representa-
tion with the empirical scaling coefficients {V̂Ji}. With
the empirical wavelet coefficients, it is possible to esti-
mate the variance of the noise process and derive bias-
corrected estimators of the scaling coefficients using the
Rician distributional assumptions. The bias-corrected
scaling coefficients are denoted {V̂ (db)

Ji }.
Threshold estimators for the wavelet coefficients are

obtained from a hard thresholding rule

Ŵ (hts)
ji =

{
Ŵji if |Ŵji| > σ̂ji

√
2 log(n);

0 if |Ŵji| ≤ σ̂ji

√
2 log(n);

(1)

σ̂2
ji = 2σ̂2 +

V̂ (db)2
ji

2j
− πσ̂2

2
L2

1/2

(
− V̂ (db)2

ji

2j+1σ̂2

)
,

where L1/2(x) = ex/2[(1 − x)I0(−x/2) − xI1(−x/2)],
with In(·) a modified Bessel function of the first kind.
The parameter σ̂ is estimated from the level j = 1
wavelet coefficients using the maximum absolute de-
viation (MAD) estimator. It is known that univer-
sal hard thresholding is inappropriate for a variety
of signal-to-noise scenarios. We therefore adopt a lo-
cal threshold that depends on a subset of wavelet
coefficients. We fix (j, i) and define a set of neigh-
bouring coefficients (except at j = 1, J) as Sji =
{(j, i), (j + 1, i), (j, b1i), (j, b2i)}. The estimated local

magnitude is then |̂Wji|
2

=
∑

(j′,i′)∈Sji
|Ŵj′i′ |2/S. If the

local variance is slowly varying, and if there is no signal
present in Sji we may note that (approximately)∑

(j′,i′)∈Sji

∣∣∣Ŵj′i′

∣∣∣2 ∼ σ2
jiχ

2
S , (2)

where S is the number of coefficients in Sji. Thus

Ŵ (htm)
ji =

⎧⎨⎩ Ŵji if |̂Wji|
2

> Sλ2
ji;

0 if |̂Wji|
2
≤ Sλ2

ji,
(3)

where λ2
ji = σ̂2

ji[2 log(n) + (S − 2) log log(n)]. The distri-
butional results are not exact because there may be cor-
relation between coefficients. The appropriate thresh-
old for a χ2

S variable is discussed in [6]. Inverting the

wavelet transform gives us two non-parametric q-space
estimators {Â(hts)(qi)} and {Â(htm)(qi)}.

3. DETERMINING SPATIAL FEATURES FROM
THE Q-SPACE DENSITY

Intuition in q-space, along with suitable summary statis-
tics, are required in order to interpret the estimated den-
sity. Firstly, we note that a simple uni-directional struc-
ture in image space corresponds to a great circle in q-
space [1]. A simple model of a unimodal diffusion is
with B(·) a decreasing function, υi ∈ R3, and ξi > 0

A(q) = B

(
q

T

[∑
i

ξiυiυ
T
i

]
q

)
. (4)

If the voxel exhibits purely isotropic diffusion then ξ1 =
ξ2 = ξ3 and in expectation all great-circles have equal
magnitude. To obtain a statistic with adequate power,
we start by estimating υ1 by the maximiser of the FRT.

We denote the great circle in q-space, associated with
point υ̂1 in image space, via G(υ̂1). The great circle or-
thogonal to q ∈ G(υ̂1) is G⊥(υ̂1,q). If the density is
isotropic, then there is no difference in A(q′) for q

′ ∈
G(υ̂1) or for q

′ ∈ G⊥(υ̂1,q) for any q. Perceived maxima
are then due to random fluctuations alone. In contrast
if the density should be modelled by (4) then A(q′) is
constant for q

′ ∈ G(υ1) and exhibits decay away from
the maximum great circle.

We interpolate
{
Â(q̃k)

}
to {q̂k}N

k=1, q̂k ∈ G(υ̂1)

for a fixed N , and also the N perpendicular great cir-
cles G⊥(υ̂1, q̂k) using a Delaunay triangulation and
triangle-based linear interpolation. We write p̂jk =

αjυ̂1 ±
√

1 − α2
j q̂k. We compute (using interpolation)

Â⊥(αj) =
1

N

N∑
k=1

Â (p̂jk) . (5)

The estimators ĵmin and ĵmax are taken to min-
imise/maximise Â⊥(αj), respectively, while k̂min and
k̂max are chosen to minimise/maximise Â(q̂k). We test
H0 : A(q′) = A for all q

′ on the great circle and the
perpendicular great circles (isotropic diffusion) versus
H1 : A(q′) is more variable on the perpendicular (uni-
modal diffusion), corresponding to (4). The test statistic
for isotropy is then given by

Tm =

[
Â⊥(αbjmax

)

Â⊥(αbjmin
)

][ Â(q̂bkmax)

Â(q̂bkmin
)

]−1

− 1. (6)

We assume the SNR is sufficiently large so that we may
perform a Taylor expansion of Â(q̂k) about A(qk) and
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(a) The noisy ODF calculated by the FRT.

(b) Thresholding coefficients jointly (J = 4).

(c) Thresholding coefficients individually (J = 4).

Fig. 1. The estimated unidirectional diffusion.

approximate the estimated distribution as Gaussian
with variance σ2

A. With σA and A known, under the
null hypothesis of isotropy where m is the effective de-
grees of freedom of a great-circle (this depends on the
spherical acquisition), we can derive a suitable thresh-
old from maxima of Gaussian random variables, and
denote this λm. If the statistic is rejected to the right
(i.e., ATm/σA > λm) then there is reason to suspect
the voxel microstructure is uni-directional, rather than

isotropic.
We estimate A and σA under H0 using

Â =
∑N

k=1 Â(q̂k)/N and σ̂A =
√

3median{|Â(q̂k) −
Â|}/0.6745, where q̂k are evenly spaced vectors on
the great circle. We note that even if the Â(q̂k) are
contaminated, the median is robust [7]. We let Um =
ÂTm/σ̂A. This statistic will enable us to test, at each
voxel, whether the distribution appears directional,
without the distribution of the test statistic depending
on any unknown nuisance parameters. Some caution
must be exercised due to multiple comparisons and for
example False Discovery Rate could be adapted when
testing across all voxels in a large region.

If the hypothesis of isotropy has been rejected the
degree of anisotropy is estimated via

ξ̂ =
log Â⊥(0)

log Â⊥(1)
. (7)

The quantity {A(qk)} must be normalized in order
to estimate ξ [2], and we use the mean of the obser-
vations at q = 0. ξ̂ for a Gaussian PDF estimates
the ratio of the largest eigenvalue to the “average”
of the two lesser eigenvalues. We can investigate
the hypothesis of ellipsoidality by looking at ζ =

maxk log[Â(q̂k)]/ log[Â(q̂k+N/4)], across k. We may
also quantify persistent asymmetric structure. A local
discrete estimator of asymmetry is calculated via

κ̃k =
8
∑N/4−1

j=1

[
Â(p̂jk) − Â(p̂(j+N/4)k)

]
∑N

j=1 Â(p̂jk)
, (8)

k̆max = argk max κ̃k, κ̂ =
1

N/4 + 1

k̆max+N/8∑
k=k̆max−N/8

κ̃k.

This is approximately (when appropriately scaled) dis-
tributed like the absolute value of a Gaussan random
variable. If κ̂ is sufficiently large, then this indicates that
a(x) will not be decaying symmetrically.

4. DISCUSSION

We focus here on determining white matter microstruc-
ture from a previously analysed clinical acquisition [8].
We estimate the ODF for a voxel in the splenium of
the corpus collosum in Figure 1. The raw FRT displays
highly asymmetric structure. The diffusion density
estimated by applying the FRT to {Â(hts)(qi)} is an
improvement, but {Â(htm)(qi)} is visually more appeal-
ing. The assumption of isotropy is firmly rejected in
favour of uni-modality at this voxel, Um = 4.90 while
λm = 1.96 for {Â(htm)(qi)} (Um = 4.90 for {Â(hts)(qi)}
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(a) The rescaled FRT.

(b) Thresholding coefficients jointly (J = 6).

(c) Thresholding coefficients individually (J = 6).

Fig. 2. The estimated unidirectional diffusion at the su-
perior longitudinal fasiculus.

also, and for the raw measurements Um = 0.39 < 1.96).
ξ̂ = 0.53 < 1 for {Â(htm)(qi)} (ξ̂ = 0.56 for {Â(hts)(qi)}
and ξ̂ = 0.59 for the raw measurements), but none of
the other tests are rejected at this voxel. We estimate
the density at the intersection of the corticospinal tract
and the superior longitudinal fasiculus (Figure 2). The
joint thresholding estimator provides a more pleas-
ing reconstruction, without imposing symmetry. For

this voxel isotropy is not rejected in favour of uni-
modality; Um = −1.09 < 1.96 for {Â(htm)(qi)}, while
Um = −0.66 < 1.96 for {Â(hts)(qi)}, and Um = −0.63 for
the raw measurements). The value of ξ̂ reflects that the
voxel is a multi-modal and not an isotropic diffusion:
ξ̂ = 0.74, 0.74 or 0.40 (raw). The other test statistics are
not interpretable in this case.

The main goal of this work is to characterise prop-
erties of the diffusion density that cannot be captured
with existing parametric models or methods that rely
on isotropic smoothing. Previous work has focused on
investigating the multi-modal nature of diffusion at the
voxel level. In contrast, we have characterised the dif-
fusion non-parametrically in terms of its symmetry and
directionality. Alternative summaries of the key charac-
teristics of diffusion are a first step towards improving
tractography techniques [3].
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